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Universal features of the off-equilibrium fragmentation with Gaussian dissipation
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We investigate universal features of the off-equilibrium sequential and conservative fragmentation processes
with the dissipative effects that are simulated by the Gaussian random inactivation process. The relation
between the fragment multiplicity scaling law and the fragment size distribution is studied and a dependence
of scaling exponents on the parameters of fragmentation and inactivation rate functions is established.
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Fragmentation is a universal process that can be foun
all scales in nature. The most general sequential binary
conservative fragmentation processes with scale-invar
fragmentation and inactivation rate functions have been s
ied previously in much detail@1–3#. The phase diagram o
these off-equilibrium processes has been established an
universal aspects of both the fragment size distribution
the total number of fragment distributions~i.e., the multiplic-
ity distribution! have been determined@3,4#. In this
fragmentation-inactivation binary~FIB! model @1,2#, one
deals with fragments characterized by some conserved s
quantity that is called the fragment mass. An ancestor fr
ment of massN fragments via an ordered and irreversib
sequence of steps. The first step is either a binary fragm
tation (N)→( j )1(N2 j ) or an inactivation (N)→(N* ).
Once inactive, the cluster cannot be reactivated anym
The fragmentation leads to two fragments, with the m
partition probability;F j ,N2 j . In the following steps, the
process continues independently for each active descen
fragment until either the low mass cutoff for further indivi
ible particles~monomers! is reached or all fragments are in
active. For any event, the fragmentation and inactivation
cur with the probabilities per unit of time;F j ,k2 j and;I k,
respectively. The fragmenting system and its evolution
completely specified by the rate functions and the ini
state. It is also useful to consider the fragmentation proba
ity pF without specifying masses of descendantspF(k)
5( i 51

k21Fi ,k2 i(I k1( i 51
k21Fi ,k2 i)

21. If the instability of
smaller fragments is smaller than the instability of larg
fragments,pF(k) is an increasing function of fragment ma
and the total mass is converted into finite size fragme
This is the shattered phase. The fragment mass independ
of pF(k) at any stage of the process until the cutoff scale
monomers characterizes the critical transition region. T
multiplicity anomalous dimensiong5d(ln^m&)/d(ln N) is the
order parameter in the FIB model. It equals 1 in the shat
ing phase and takes the intermediate value between 0 a
in the critical transition region.

For most fragmenting systems, the off-equilibrium rela
ation process ceases due to a dissipation. The dissipati
not always scale invariant as considered in Ref.@1#; on the
contrary, it is often characterized by a definite and usua
small length scale. It is then an open question to what ex
571063-651X/98/57~6!/7305~4!/$15.00
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the fragmentation processes, which on the one hand
driven by the homogeneous scale-invariant fragmenta
rate function and on the other hand are inactivated at a
tain fixed scale by the random inactivation process, may
velop scale-invariant and universal features in both the fr
ment mass distributionn(k) and the fragment multiplicity
distributionP(m). This question is important in view of the
widespread occurrence of scale-invariant fragment mass
tributions n(k);k2t and the lack of convincing argumen
for using homogeneous dissipation functions in many p
cesses including parton cascading in perturbative quan
chromodynamics~PQCD! @5# or the fragmentation of highly
excited atomic nuclei, atomic clusters, or polymers. In t
work, we address this fundamental question using the
process with the homogeneous fragmentation rate func
F j ,k2 j5@ j (k2 j )#a and with the dissipation at small scale
which are modeled by the Gaussian inactivation rate func

I k5c expF2
1

2s2S k21

N D 2G . ~1!

An asymptotic (t→`) fragment mass distribution in th
critical transition region of the FIB model with scale
invariant dissipation phenomena@1,2# is a power law with an
exponentt<2. In the shattering phase, the fragment ma
distribution is also a power law, but with an exponentt.2.
Another characteristic observable is the fragment multip
ity distribution P(m)5(kPk(m) wherePk(m) is the prob-
ability distribution of the number of fragments of massk.
This quantity has been intensely studied in the strong in
action physics@6#. Of particular importance is the possibilit
of asymptotic scaling of multiplicity probability distribution

^m&dP~m!5F~z~d!!, z~d![
m2^m&

^m&d
, ~2!

where the asymptotic behavior is defined as^m&→` and
m→` for a fixed m:^m& ratio. ^m& is the multiplicity of
fragments averaged over an ensemble of events. The sc
law ~2! means, for example, that data for differing energ
~hence differing^m&) should fall on the same curve whe
^m&dP(m) is plotted against the scaled variablez(d)[(m
7305 © 1998 The American Physical Society
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2^m&)/^m&d. Some time ago Koba, Nielsen, and Olesen s
gested an asymptotic scaling~2! with d51 in the strong
interaction physics@7#. The same scaling has been found a
in the critical transition region of the scale-invariant F
process for pF.1/2 and a>21 @3#. Recently, Botet,
Płoszajczak, and Latora reported another scaling limit in
~2! with d51/2, which holds in the percolation and in th
shattering phase of scale-invariant FIB process@4#. d51/2
and 1 are the two limiting values sinced.1 or d,1/2 are
incompatible with the scaling hypothesis~2!.

The study presented in this paper correspond to the
main a>21 of fragmentation rate functionsF j ,k2 j . Many
known homogeneous fragmentation kernels correspond
this domain. These include the singular kernela521 in the
PQCD gluodynamics@8#, a522/3 for the spinodal volume
instabilities in three dimensions@2#, a511 in the scalar
lf6

3 field theory in six dimensions, and many others@2#. For
a,21, the fragmentation process is dominated by the sp
ting k→(k21)11 at each step in the cascade and leads
the finite limiting value of^m& independently of the initial
sizeN @3#. In this evaporation phase, the scaling solution~2!
does not hold and the multiplicity anomalous dimension
equal to zero whenN→`. This phase is not relevant for th
problem we want to address in this paper.

Without restricting the generality of our discussion, w
will present below results for fragmentation kernels w
a521 and11. The upper part of Fig. 1 shows multiplicit
distributions fora521 in the scaling variables~2! for d
51 ~the upper left part! and fragment mass distributions fo
the same parameters~the upper right part!. The cascade
equations of the Gaussian FIB model have been solved
Monte Carlo simulations@1,2# for different initial system
sizes (N51024,4096) and for the exemplary parametersc
51 and s50.1,1 of the inactivation rate functionI k
[I k(c,s). We have made an exhaustive analysis ofP(m)
for a broad range ofc,s parameters, finding in all cases th
Koba-Nielsen-Olesen~KNO! scaling (d51). We have found
the KNO scalinguniquely for a521. The shape of the
KNO scaling functionF(z(1)) depends on the precise valu
of both c ands.

In the lower left part of Fig. 1 we show typical multiplic
ity distributions fora511 which are plotted for differen
system sizes in the Botet-Płoszajczak-Latora~BPL! scaling
variables (d51/2). The corresponding fragment mass dis
butions are shown in the lower right part of Fig. 1. Again, t
precise form of the BPL scaling functionF(z(1/2)) depends
on the chosen set of parametersc ands. In contrast to these
results of the Gaussian FIB model, the fragmentation proc
in the scale-invariant FIB model for any value of exponena
may be found either in the critical transition region or in t
shattering phase depending on the homogeneity indexb of
the inactivation rate functionI k5I 1kb @1,2#. This means,
e.g., that for botha521 and11 one may see either th
KNO scaling or the BPL scaling of multiplicity distribution
depending on the precise value of the homogeneity inde
the inactivation term.

Concerning the fragment mass distributions, Fig. 1 sho
the distributions fora521,11 and different parameters o
the Gaussian inactivation rate functionI k(c,s). For s *0.5
one finds the power-law distribution of fragment masses
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any value of the parameterc. In the case studieds51, c
51, and the exponentt51.8 and 2.8 fora521 and11,
respectively. For a givena the value of the exponentt is
remarkably independent ofs but depends strongly on th
value of the parameterc in I k(c,s). For a smaller value of
s (s50.1 is shown in Fig. 1! the fragment mass distribu
tion decreases exponentially and the shape of the sca
function resembles the Gaussian distribution. The form
this exponential distribution depends on bothc ands param-
eters.

As a generic case fora521 we have found, the scale
invariant region of power-law fragment mass distributio
with t<2 for s*0.5 and the exponential region of ma
distributions fors&0.5. The power-law region is completel
analogous to the critical transition region of the sca
invariant FIB model fora.21 andpF.1/2 @1–3# because
the multiplicity anomalous dimension in both models is

g5t21 ~0<g<1!. ~3!

We have verified the validity of this relation in the Gaussi
FIB model for a broad range ofc,s values. In the exponen
tial regiong is alwaysequal to 1 independently of the valu
of the parameterc, i.e., this region is in the shattering phas

FIG. 1. Multiplicity probability distributions in the scaling vari
ables@see Eq.~2!#, and the fragment mass distribution for two h
mogeneous fragmentation kernels and two Gaussian inactiva
rate functions. Each set of data corresponds to 106 independent
events of Monte Carlo simulations.~i! Upper left part: the fragmen-
tation kernel witha521 and the inactivation rate function~1! for
c51 and two typical values ofs. Two sets of data are plotted fo
two different total mass:N51024~crosses! andN54096~circles!.
These data are plotted in the KNO form, i.e.,d51 @see Eq.~2!#. ~ii !
Upper right part: the fragment mass distributions in a doub
logarithmic scale shown for the same parametersa,c,s as in ~i!.
The total mass isN54096. Big asterisks represent results obtain
for the same values of parametersa,c and for a much larger value
of s (s510) to show the independence of the scaling part of
fragment mass distribution with the value ofs. The line in between
points is shown to guide the eyes.~iii ! Lower left part: Same as in
~i!, but for the fragmentation kernel witha511. These data are
plotted in the BPL form, i.e.,d51/2 @see Eq.~2!#. ~iv! Lower right
part: the fragment mass distributions fora511. The parameters
c,s,N are as in~ii !.
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One should call that shattering in the scale-invariant F
model is related exclusively to the BPL scaling, whereas
the Gaussian FIB model fora521 the KNO scaling holds.

The fragment size distributions fora511 and different
values ofs behave similarly to thea521 case, except tha
now for s*0.5 the power-law exponentt.2. For alls, i.e.,
in both exponential and power-law regions of mass distri
tion, the multiplicity anomalous dimension isg51 and the
BPL scaling holds. This generic situation is complete
analogous to the multiplicity behavior found in the shatter
phase of the scale-invariant FIB model@1,2#.

Whenever the fragment size distribution is a power la
the KNO scaling of multiplicity distributions is associate
with t<2 and the BPL scaling of multiplicity distribution
with t.2 in both scale-invariant and scale-dependent
gimes of dissipation. This clearly indicates a direct relat
between the multiplicity scaling law and the fragment ma
distribution scaling regimes in the FIB model. In view of th
generality of the FIB process, it would be very interesting
test this relation experimentally. A different aspect of t
Gaussian FIB model is associated with properties of mu
plicity scaling in the new region of exponential fragme
mass distributions. In this region, BPL scaling holds fora
511, whereas KNO scaling is seen fora521.

In Fig. 2 we plot for different values of the parameterc
the normalized cumulant factorial moment of order 2@9#,
g25@^m(m21)&2^m&2#/^m&2, vs the widths of inactiva-
tion rate functionI k(c,s). The exponent of homogeneou
fragmentation kernel isa521. For this choice ofa, the
KNO scaling holds andg2 becomes the second moment
the scaling functionF(z(1)), which is independent of the
initial massN @6,3#. For each point (c,s), cascade equation
of the FIB model have been solved exactly by the recurr
formula @3# up to the initial system sizeN5218. As can be
seen in Fig. 2, the multiplicity fluctuations as measured

FIG. 2. Cumulant factorial momentg2 of the fragment multi-
plicity distribution is plotted vs the width parameters of the Gauss-
ian inactivation function~1! with c50.5,1,5. The homogeneou
fragmentation kernel is taken witha521. Each point correspond
to a system of sizeN5218 and the values ofg2 are calculated by
solving exact recurrent equations. The line joining points is sho
to guide the eyes.
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g2 are extremely small in the exponential region fors
&0.5. The change ofg2 when passing from the power law t
the exponential region is continuous, but the largest va
tions of g2(s) appear ats;0.5. For large values ofs, the
cumulant factorial moment approaches a limiting value t
depends on the value of parameterc.

The experimental information aboutg2 is not extensive
and concerns mainly charged particle multiplicities at re
tivistic and ultrarelativistic energies. The DELPHI Collab
ration reported the data on hadron production ine1e2 anni-
hilations for the center of mass energy ofAs591
GeV, finding g250.04 @10#. In hadron-hadron collisions

p1-p, K1-p, p-p, andp-p̄ for c.m. energies ranging up t
1000 GeV@6,11#, values ofg2 increase from about 0.05 to
0.3 as energies increase to collider values. The distributio
galaxy counts in the regions of sky covered by the Zwic
catalog@12# yields g2.0.3 @13#. Independently of the ques
tion whether the KNO scaling holds in all those differe
physical systems, the measured values ofg2 clearly exclude
the exponential region of the Gaussian FIB process. M
more information could be extracted if in addition to th
moments of the multiplicity distribution also the mass dist
bution would be available. In high-energy lepton and/or ha
ron collisions, for example, this would require measuring
hadron mass distribution.

In conclusion, we have demonstrated that the o
equilibrium binary fragmentation with the scale-invaria
fragmentation kernel and the scale-dependent inactiva
simulating the dissipation at small scales yields the fragm
mass and fragment multiplicity distributions that are sc
invariant for a broad range of parameters. This is an imp
tant finding because most fragmentation processes in na
that have these scale-invariant features are probably no
sociated with the dissipative processes acting at all sca
The scale-dependent fragmentation processes may also
velop strong scale-invariant fluctuations~the KNO scaling!,
though the region of their appearance is restricted to the
ticular value of the exponenta521 of the homogeneous
fragmentation function. The region ata521 ands*0.5 is
the critical transition region of the Gaussian FIB process.
other values ofa the fragment multiplicity distributions obey
the BPL scaling, i.e., the small amplitude limit of scalin
multiplicity fluctuations. Another transition zone of th
Gaussian FIB model is defined by the widths of the inacti-
vation rate function. Ats.0.5, the fragment size distribu
tion changes from exponential~for s,0.5) into a power law
~for s.0.5). The form of the scaling functionF(zd), to-
gether with the form of the fragment mass distributionn(k),
imposes strong constraints on the choice of basic functi
of the FIB kinetic equations: the fragmentation and inactiv
tion functions. This has been demonstrated on the exam
of hadron production data ine1e2 annihilation @14#. The
results of this paper show that the closing of the gap betw
experimental observables related to the fragment mass d
bution and/or the fragment multiplicity distribution and th
basic ingredients of the kinetic theory, i.e., the rates of a
vation F j ,k2 j and inactivationI k , can be achieved for man
physical systems in nature.
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